
Unit-2

Tokens

A token is the smallest element of a C++ program that is meaningful to the compiler. It act as

building blocks of a program.

The following tokens are available in C++

 Keywords

 Identifiers

 Constants

 Operators

Keywords:
Keywords are reserved words which have fixed meaning, and its meaning cannot be changed.

The meaning and working of these keywords are already known to the compiler. These reserved

keywords cannot be used as identifiers in a program.

All keywords are written in lower case.
The reserved words of C++ may be conveniently placed into several groups. In the first group we
put those that were also present in the C programming language and have been carried over into
C++. and here they are:
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

While in C++ there are some additional keywords other than C Keywords they are:

asm bool catch class
delete explicit using virtual
export false friend inline
namespace new operator true
private protected public try
this throw template typeid

Identifiers:
C++ allows the programmer to assign names of his own choice to variables, arrays, functions,

structures, classes, objects called identifiers.
The identifier is a sequence of characters taken from C++ character set.These are the

fundamental requirement of any language.

Rules for naming C++ Identifiers:
There are certain rules to be followed by the user while naming identifiers, otherwise, you would

get a compilation error. These rules are:

 First character: The first character of the identifier in C++ should positively begin with

either an alphabet or an underscore. It means that it strictly cannot begin with a number.

 No special characters: C++ does not encourage the use of special characters while

naming an identifier. we cannot use special characters like the exclamatory mark or

the “@” symbol.

 No keywords: Using keywords as identifiers in C++ is strictly forbidden, as they are

reserved words that hold a special meaning to the C++ compiler.

 No white spaces: Leaving a gap between identifiers is discouraged. White spaces

incorporate blank spaces, newline, carriage return, and horizontal tab.

 Word limit: The use of an arbitrarily long sequence of identifier names is restrained. The

name of the identifier must not exceed 31 characters, otherwise, it would be insignificant.

 Case sensitive: In C++, uppercase and lowercase characters have different meanings.

Some of the valid identifiers are: shyam, _max, j_47, name10

And invalid identifiers are :4xyz, x-ray, abc 2

Constants:
Constants (often referred to as Literals) are data items that never change their value during the

execution of the program.

Type of Constants:
The following types of constants are available in C++.

 Integer Constants

 Character Constants

 Floating Point Constants

 Strings Constants

Integer Constants: Integer constants are whole number without any fractional part. C++

allows three types of integer constants.

 Decimal integer constants : It consists of sequence of digits . For example 124, - 179, +108.

 Octal integer constants: It consists of sequence of digits starting with 0 (zero). For example.

014, 012.

 Hexadecimal integer constant: It consists of sequence of digits preceded by ox or OX. For

example 0x4a

Character Constants:
A character constant in C++ must contain characters and must be enclosed in single quotation

marks.

 For example 'A', '9', etc. C++ allows nongraphic characters which cannot be typed directly from

keyboard, e.g., backspace, tab etc. These characters can be represented by using an escape

sequence. An escape sequence represents a single character.For example '\b' for backspace that

cursor moves towards left by one position.

Floating Point Constants
They are also called real constants. They are numbers having fractional parts. They may be

written in fractional form or exponent form. A real constant in fractional form consists of signed

or unsigned digits including a decimal point between digits.

 For example 3.0, -17.0, -0.627, 2.5e3 etc.

String Constants
A sequence of character enclosed within double quotes is called a string literal. String literal is

by default (automatically) added with a special character „\0' which denotes the end of the string.

Therefore the size of the string is increased by one character.

 For example "COMPUTER" will re represented as "COMPUTER\0" in the memory and its size

is 9 characters.

;

Operators:
 Operators are special symbols used for specific purposes. C++ provides many operators for

manipulating mathematical or logical data.

Types of Operators:
The following types of operators are available in C++.

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Increment and Decrement Operators

 Assignment Operators

 Bitwise Operators

 Misc Operators

Arithmetic Operators: Arithmetical operators are used to performs an arithmetic (numeric)

 operation.The following table shows the arithmetic operators

Relational Operators: The relational operators are used to test the relation between two values.

 These operator returns zero when the relation is false and a non-zero

 when it is true. The following table shows the relational operators

Logical Operators: The logical operators are used to combine one or more relational expression

 The following table shows the logical operators

Operators Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

Operators Meaning

< Less than

<= Less than or equal to

== Equal to

> Greater than

>= Greater than or equal to

! = Not equal to

Operators Meaning

|| Logical AND. Performs logical conjunction of two expressions.(if
both expressions evaluate to True, result is True. If either
expression evaluates to False, the result is False)

&& Logical OR. Performs a logical disjunction on two expressions.(if
either or both expressions evaluate to True, the result is True)

! Logical NOT. Performs logical negation on an expression.

Increment and Decrement Operators:

C++ provides two special operators '++' (Increment)and '--'(Decrement) for

incrementing and decrementing the value of a variable by 1.

The increment/decrement operator can be used with any type of variable but it

cannot be used with any constant.

Increment and decrement operators each have two forms, pre and post.

The syntax of the increment operator is:

Pre-increment: ++variable

Post-increment: variable++

The syntax of the decrement operator is:

Pre-decrement: – –variable

Post-decrement: variable––

In Prefix form first variable is first incremented/decremented, then evaluated

In Postfix form first variable is first evaluated, then incremented/decremented

For Example:

int x, y;

int i = 10, j = 10;

x = ++i; //add one to i, store the result back in x

y = j++; //store the value of j to y then add one to j

cout << x; //11

cout << y; //10

Assignment Operator:
The assignment operator '=' is used for assigning a variable to a value. This

operator takes the expression on its right-hand-side and places it into the variable

on its left-hand-side.

 For example: m = 5;

The operator takes the expression on the right, 5, and stores it in the variable on

the left, m.

x = y = z = 32;

This code stores the value 32 in each of the three variables x, y, and z.

C++ also support compound assignment operators. The following table shows the

 compound assignment operators

 Compound Assignment Operators

Bitwise Operators:

The bitwise operators are those are used to perform bit level operations . The

following table shows the relational operators

Operators Equivalent to Meaning

+ = A + = 2 A = A + 2

- = A - = 2 A = A - 2

% = A % = 2 A = A % 2

/= A/ = 2 A = A / 2

*= A * = 2 A = A * 2

Conditional operator:

The conditional operator ?: is called ternary operator as it requires three operands.

The format of the conditional operator is:

Conditional_ expression ? expression1 : expression2;

If the value of conditional expression is true then the expression1 is evaluated,

otherwise expression2 is evaluated.

For example

int a = 5, b = 6;

big = (a > b) ? a : b;

The condition evaluates to false, therefore big gets the value from b and it

becomes 6.

Special Operator:

 Special operators are those operators which have special purpose.They are as

 follows-

Operator Description

Scope Resolution Operator (::) It is used to identify and disambiguate identifiers used in
different scopes.

Casting Operator (()) It is used for type conversion.

Address of Operator (&) It returns the address of a memory location.

sizeof() Operator It returns the size of a memory location.

Comma (,) Operator It allows grouping two statements where one is expected.

Indirection Operator or Value of
Operator (*)

It defines pointer to a variable.

new It is used to allocate the memory space dynamically
followed by a data type specifier.

delete It deallocates the memory previously allocated by the new
operator.

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Bitwise NOT

<< Left Shift

>> Right Shift

Basic Structure of C++ Program:

 The above diagram shows the basic program structure of C++

Declaration section includes different library functions and header files. All preprocessor

 directives are written in this section.

Global declaration includes structure, class, variable. All global variables are declared here.

Main() function is an entry point for all the function. Every C++ program starts with main()

 function.

Example :

 /* First C++ Program */

#include <iostream.h>

int main()

{

 cout<<"Welcome";

 return 0;

}

Output:

Welcome

Following are the steps/ parts of the above C++ program:

/* First C++ Program
*/

/*...*/ comments are used for the documentation to understand the code to others. These comments

are ignored by the compiler.

#include<iostream.h> It is a preprocessor directive. It contains the contents of iostream header file in the program before

compilation. This header file is required for input output statements.

int/void Integer (int) returns a value. In the above program it returns value 0. Void does not return a value so

there is no need to write return keyword.

main() It is an entry point of all the function where program execution begins.

Curly Braces {...} It is used to group all statements together.

cout The C++ cout statement is the instance of the ostream class. It is used to produce output on the

standard output device which is usually the display screen

"Welcome" The words in inverted commas are called a String. Each letter is called a character and series of

characters that is grouped together is called a String.

String always be put between inverted commas.

<< It is the insertion stream operator. This operator sends the content of variables on its right to the

object on its left.

In the above program, right operand is the string "Welcome" and left operand is cout object. So it

sends the string to the cout object and then cout object displays the string as a output on the screen.

Unit-2

Control Structures in C++

Control structures determine the order in which the statements are executed.There are various

control structure in C++ as follows-

 Decision Making Structure

 Looping Structure

Decision Making Structure:
Decision making structure allows to make a decision, based on a condition.It is also called

conditional structure.

It specifies one or more conditions to be tested or evaluated by the programmer.

Following are the types of decision making structure

1. If Statement

2. If . . . Else Statement

3. Nested If Statement

4. Switch Statement

1. If Statement:

If statement is the simplest way to modify the control flow of program.

It is a conditional branching statement.

This statement consists of a expression followed by one or more statements.

Syntax:

if (condition)

{

 Statement 1;

 Statement 2;

 .

 .

 .

}

Example : Demonstrating the If Statement

#include <iostream.h>

int main()

{

 int num1=10, num2=20;

 if(num1 < num2)

 {

 cout<<"Num2 is greater";

 }

 return 0;

}

 Output:

 Num2 is greater

2. If . . . Else Statement

It is a two-way decision making statement.

When the expression becomes false then else block will be executed.

It is used to make decisions and execute statements conditionally.

Syntax:

if(Condition)

{

 Statements;

}

else

{

 Statements;

}

Flow Diagram of If-Else Statement

Example : Demonstrating the If-Else Statement

#include <iostream.h>

int main()

{

 int num1=10, num2=20;

 if(num1 > num2)

 {

 cout<<"Num2 is greater";

 }

 else

 cout<<"Num1 is smaller";

 return 0;

}

Output:

Num1 is smaller

3. Nested If . . . Else Statement

Nested If . . . Else statement allow the use of one if or else if statement inside another if

or else statements.

This statement is like performing another if condition for true or false value.

Syntax:

if (Condition)

{

 Statements;

}

else if (Condition n)

{

 Statements;

}

else

{

 Statements;

}

Example : Program demonstrating Nested If-Else Statements

#include <iostream.h>

int main()

{

 int num1=20, num2=10;

 if(num1 > num2)

 {

 cout<<"Num2 is greater";

 }

 else if (num1 < num2)

 {

 cout<<"Num1 is smaller";

 }

 else

 {

 cout<<"Num1 and Num2 are equal";

 }

 return 0;

}

Output:

Num2 is greater

4. Switch Statement

Switch statement is used to perform different actions on different conditions.

This statement compares the same expression to several different values.

Following are the rules for Switch statement:

1. Switch case should have at most one default label.

2. Default case is optional.

3. Case labels must be unique, end with colon, integral type and have constant

 expression.

4. Break statement takes control out of the switch and two or more cases may share one

 break statement.

5. Relational operators are not allowed in Switch statement.

6. Macro identifier and Const variable are allowed in switch case statement.

7. Empty switch case is allowed.

8. Nesting switch is allowed.

9. Default case can be placed anywhere in the Switch statement.

Syntax

switch (Expression)

{

 case condition1:

 //Statements;

 break;

 case condition2:

 //Statements;

 break;

 case condition3:

 //Statements;

 break;

 .

 .

 case condition n;

 //Statements;

 break;

 default:

 //Statement;

}

Flow Diagram of Switch Statement

Example : Demonstrating execution of Switch statement

#include <iostream.h>

int main()

{

 char color='O';

 switch(color)

 {

 case 'R': cout<<"Red"<<endl;

 break;

 case 'G': cout<<"Green"<<endl;

 break;

 case 'B': cout<<"Blue"<<endl;

 break;

 case 'O': cout<<"Orange"<<endl;

 break;

 case 'P': cout<<"Pink"<<endl;

 break;

 case 'W': cout<<"White"<<endl;

 break;

 case 'Y' : cout<<"Yellow"<<endl;

 break;

 default: cout<<"Inavlid Color"<<endl;

 }

 return 0;

}

Output:

Orange

Looping Structure

Looping structure allows to execute a statement or group of statements multiple

times.It provides the following types of loops to handle the looping requirements:

 While Loop

 For Loop

 Do . . . While Loop

1. While Loop

While loop allows to repeatedly run the same block of code, until a given condition

becomes true.

It is called an entry-controlled loop statement and used for repetitive execution of the

statements.

The loop iterates while the condition is true. If the condition becomes false, the program

control passes to the next line of the code.

Flow Diagram of While Loop

Syntax:

while (Condition)

{

 //Statements;

}

Example : Demonstrating execution of While loop

Fibonacci series program to demonstrate execution of While loop.

#include <iostream.h>

int main()

{

 int num1 = 0, num2 = 1, num3 = 0;

 cout<<"Fibonacci Series:"<<endl;

 while(num2 <= 10)

 {

 num3 = num1 + num2;

 num1 = num2;

 num2 = num3;

 cout<<num3<<endl;

 }

 return 0;

}

Output:

Fibonacci Series:

1

2

3

5

8

13

2. For Loop

For loop is a compact form of looping.

It is used to execute some statements repetitively for a fixed number of times.

It is also called as entry-controlled loop.

It is similar to while loop with only difference that it continues to process block of code

until a given condition becomes false and it is defined in a single line.

It includes three important parts:

1. Loop Initialization

2. Test Condition

3. Iteration

All the above parts come in a single line separated by semicolon (;).

Flow Diagram of For Loop

Syntax:

for (initialization; test-condition; increment/decrement)

{

 //Statements;

}

Example : Demonstrating the execution of For Loop

#include <iostream.h>

int main()

{

 int i = 1, j = 5;

 for(i=1; i<=j; i++)

 {

 cout<<"For Loop Execution"<<i<<endl;

 }

 return 0;

}

Output:

For Loop Execution:1

For Loop Execution:2

For Loop Execution:3

For Loop Execution:4

For Loop Execution:5

3. Do . . . While Loop

Do . . . While loop is executed at least once, even if the condition is false.

It is called as an exit-controlled loop statement.

This loop does not test the condition before going into the loop. The condition will be

checked after the execution of the body that means at the time of exit.

It is guaranteed to execute the program at least one time.

Flow Diagram of Do . . . While Loop

Syntax:

do

{

 //Statements;

}

while(Condition);

In Do-while loop, while condition should always have a semi-colon at the end.

Example : Demonstrating the execution of Do-While loop

#include <iostream>

using namespace std;

int main()

{

 int num=0;

 do

 {

 cout<<“Do While Loop Execution:”<<num<<endl;

 num++;

 }

 while(num<=5);

 return 0;

}

Output:

Do While Loop Execution:0

Do While Loop Execution:1

Do While Loop Execution:2

Do While Loop Execution:3

Do While Loop Execution:4

Do While Loop Execution:5

Unit-2

Data Types

Data types are used to define the variables that the same of type data it can store in memory. The

data types determine the type of data to be stored in memory. The data types are used to

represent the different values to be stored in the variable. The variable is a name that refers the

memory location which means whenever you create a variable you reserve the space in the

memory and based on the data type of the variable the operating system allocates the memory.

Types of Data Types:

 Primitive Data Types:
Primitive data types are the built-in data types directly available for the user to set

out the operations.

Following are the types primitive data-types:

1. Integer (int)
Integer data types are used to sore integer value. Integer data type holds 2

bytes of memory space and range from 2147483648 to 2147483647.

Syntax:

int variable = value;

2. Character (char)
Character data types are used to store character values. Character types

hold 1 byte of memory space and range from 128 to 127 or 0 to 255.

Syntax:

char variable = 'val';

3. Float (float)
Float data types are used to store single-precision data values i.e. decimal

values. It holds 4 bytes of memory space.

Syntax:

float variable = val;

4. Double (double)
Double data types are used to store double-precision floating-point data

values. It holds 8 bytes of memory space.

Syntax:

double variable = val;

5. Boolean
Boolean types store and represent logical values. They represent the result

in the form of True or False.

6. Void
Void types represent entities without any value. They are used as a data

type for functions that do not return any value.

 Derived Data Types in C++

The Derived types are derived or formed from the built-in/primitive data

types.

Following are the types of derived data-types:

1. Array

2. Function

3. Pointers
4. Reference

1. Array
An array is a linear data structure that stores the elements in contiguous

memory locations in a linear/sequential manner. The elements are indexed

from zero.

Syntax:

Data_type array_Name[size];

2. Function
Functions are a block of statements that particularly perform a set of tasks

under it. They make the code more efficient and readable.

Syntax:

Data_type function_Name(Arguments)

3. Pointers
Pointer types represent the address of the data members. They hold the

address of another data member to which they point.

Syntax:

data_type *variable;

 4. Reference
 A reference is an alternative name for an object.It provides an alias for a

 previously defined variable.

 User-Defined Data Types in C++

C++ Language provides us with User-Defined Data types that are the data types

created by the user/programmer.

 Following are the types of user-defined types in C++:

1. Structure
2. Union
3. Enumeration

4. Class

1. Structure

Structure type, groups elements of different data types under a custom data

type (structure) and is represented by a single structure name.

Syntax:
struct Structure_Name

{

 Datatype data_member1;

 Datatype data_member2;

 .

 .

 Datatype data_memberN;

};

Example:

struct Student_info

{

char name[100];

char address[100];

char division[50];

int roll_num;

};

2. Union

https://www.journaldev.com/c-plus-plus

Union types serve the same functionality as that of the Structures.

The only difference is that in Unions, all the data members share the same space

of memory which is equivalent to the size of the largest variable, during the

execution of the program.

Syntax:

Union Union_Name

{

 Datatype data_member1;

 Datatype data_member2;

 .

 .

 Datatype data_memberN;

};

Example:

union Student_info

{

char name[100];

char address[100];

char division[50];

int roll_num;

};

In the above piece of code, name and address are largest among all the data

members declared because we specified their size to 100.

So, the compiler will allocate the size of the largest variable i.e. name or address,

to the memory storage to accommodate them and all the variables will share the

same memory space (100) and address.

3. Enumeration
Enumeration types help increase the readability of the code. It assigns names to

the integers from the program.

These types are indexed from zero resembling the indexing fashion of arrays.

Syntax:

enum enumeration_type_name{value1, value2,..valueN};

Example:

#include <iostream.h>

enum Days { Mon,

 Tue,

 Wed,

 };

int main()

{

 for (int i = Mon; i <= Wed; i++)

 cout << i << " ";

 return 0;

}

Output:

0 1 2

4.Class
Class represents a group of similar object.

Syntax:

 Class Class_name

 {

 private:

 variable declarations

 function() declarations;

 public:

 variable declarations;

 function() declarations;

};

Example:

 Class emp

 {

 private:

 int eno;

 char name[20];

 public:

 void get();

 void put();

};

 Precedence and Associativity of C++ Operators

Operator precedence determines the grouping of terms in an expression. The associativity of an

operator is a property that determines how operators of the same precedence are grouped in the

absence of parentheses. This affects how an expression is evaluated. Certain operators have

higher precedence than others;

 for example, the multiplication operator has higher precedence than the addition operator:

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher

precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest

appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

The following table lists the precedence and associativity of C++ operators. Operators are listed

top to bottom, in descending precedence.

Precedence Operator Description Associativity

1 :: Scope Resolution Left to Right

2 a++
a--
type()
type{ }
a()
a[]
.
->

Suffix/postfix increment
Suffix/postfix decrement
Function cast
Function cast
Function call
Subscript
Member access from an
object
Member access from object
ptr

Left to Right

3 ++a
--a
+a
-a
!
~
(type)
*a
&a
sizeof
new new[]
delete
delete[]

Prefix increment
Prefix decrement
Unary plus
Unary minus
Logical NOT
Bitwise NOT
C style cast
Indirection (dereference)
Address-of
Size-of
Dynamic memory allocation
Dynamic memory
deallocation

Right to Left

4 .*
->*

Member object selector
Member pointer selector

Left to Right

5 a * b
a / b
a % b

Multiplication
Division
Modulus

Left to Right

6 a + b
a - b

Addition
Subtraction

Left to Right

7 <<
>>

Bitwise left shift
Bitwise right shift

Left to Right

8 <=< Three-way comparison
operator

Left to Right

9 <
<=
>
>=

Less than
Less than or equal to
Greater than
Greater than or equal to

Left to Right

10 ==
!=

Equal to
Not equal to

Left to Right

11 & Bitwise AND Left to Right

12 ^ Bitwise XOR Left to Right

13 | Bitwise OR Left to Right

14 && Logical AND Left to Right

15 || Logical OR Left to Right

16 a ? b : c
=
+=
-=
*=
/=
%=
<<=
>>=
&=
^=
|=

Ternary Conditional
Assignment
Addition Assignment
Subtraction Assignment
Multiplication Assignment
Division Assignment
Modulus Assignment
Bitwise Shift Left Assignment
Bitwise Shift Right
Assignment
Bitwise AND Assignment
Bitwise XOR Assignment
Bitwise OR Assignment

Right to Left

17 , Comma operator Left to Right

