
Unit-3 

Classes and Objects 

 
Class: 

Class is a user defined data type, which holds its own data members and member 

functions, which can be accessed and used by creating instance of that class. It is  the 

most important feature of C++ that leads to Object Oriented programming. 

The variables inside class definition are called as data members and the functions are 

called member functions and the access of these data members depends on the access 

specifiers  

For example: Class of birds, all birds can fly and they all have wings and beaks. So here 

flying is a behavior and wings and beaks are part of their characteristics. And there are 

many different birds in this class with different names but they all posses this behavior 

and characteristics. 

Similarly, class is just a blue print, which declares and defines characteristics and 

behavior, namely data members and member functions respectively. And all objects of 

this class will share these characteristics and behavior. 

Class in C++ are similar to structures in C, the only difference being, class defaults to 

private access control, where as structure defaults to public. 

 

Syntax: 

 
class class_name 

{ 

     Access specifier: Data members; 

         Member functions(){} 

}; 

 

Example 

 
class employee 

{ 

     public: 

         int empid; 

         string empname; 

         float salary; 

}; 

 

Class definition starts with the keyword class followed by the class name and ends with 

a semicolon (;). 

The primary purpose of a class is to hold data/information. 

 



 

Member Function of a Class 

 
Member function of a class is a function that must be declared inside the class. 

The member functions can be defined as 

 

1. Inside Member Function 

2. Outside Member Function 

 

1. Inside Member Function: 

 
Inside member function class can be declared in public or private section. 

 

Example : Program to demonstrate member function 

Accessing private member of a class using member function 
 

#include <iostream.h> 

class employee 

{ 

     private:               //Private section starts 

          int empid; 

          float esalary; 

     public:             //Public section starts 

          void display()     //Member function 

          { 

               empid = 1; 

               esalary = 10000; 

               cout<<"Employee Id is : "<<empid<<endl; 

               cout<<"Employee Salary is : "<<esalary<<endl; 

          } 

}; 

 

int main() 

{ 

      employee e;      //Object Declaration 

      e.display();        //Calling to member function 

      return 0; 

} 

 

Output: 
Employee Id is : 1 

Employee Salary is : 10000 

 

 

In the above program, the member function display() is defined inside the class in 

public section. 

In int main() function, object 'e' is declared. An object has permission to access 

the public members of the class. 

The object 'e' invokes the public member function display(). 



The public member function can access the private members of the same class. 

The display() function initializes the private member variables and displays the 

contents on the console. 

 

 

2. Outside Member Function 

 
If a function is small and inside the class, it is considered as an Inline function. 

If a function is large, it should be defined outside the class. 

When the member function of a class is defined outside the class they are called 

as Externally defined member function. 

 

Scope Resolution (::) operator is used to define the member function of the class 

outside the scope and prototype declaration of function must be declared inside 

the class. 

 

Syntax: 

 

Return_type Class_name :: Function_name(argument_list) 

{ 

     //Statements; 

} 

 

Example : Define member function class outside the scope/class 

 

#include <iostream> 

class employee 

{ 

     private:                  //Private section starts 

          int empid; 

          float esalary; 

     public:                 //Public section starts 

          void display(void);     //Prototype Declaration 

};  //End of class 

void employee :: display()     //Function Definition Outside the Class 

{ 

     empid = 1; 

     esalary = 10000; 

     cout<<"Employee Id is : "<<empid<<endl; 

     cout<<"Employee Salary is : "<<esalary<<endl; 

} 

int main() 

{ 

     employee e;      //Object Declaration 

     e.display();       //Calling to public member function 

     return 0; 

} 

 

Output: 
Employee Id is : 1 



Employee Salary is : 10000 

 

 

In the above program, the prototype declaration of display() function is declared 

inside the class terminated by class definition. 

The function body of display() function is defined inside the class. 

The function declaration of display() function is, void employee :: 

display() where, void is a return type and employee is a class name. The scope 

resolution (::) operator separates the class name and function name, followed by 

the body of function which is defined. 

 

 

Access Modifiers in C++ 

 

Access modifiers define the access control rules. 

It is used to set boundaries for availability of members of class. 

Following are the three access  modifiers  in C++: 

 

1. public 

2. private 

3. Protected 

 

Access modifiers in the program, are followed by a colon. You can use either one, two or all 3 

modifiers in the same class to set different boundaries for different class members. They change 

the boundary for all the declarations that follow them. 

 

 

Public Access Modifier : 
 

Public, means all the class members declared under public will be available to everyone. 

The data members and member functions declared public can be accessed by other 

classes too. Hence there are chances that they might change them. So the key members 

must not be declared public. 

 

 

Access 

Modifiers 

Description 

public It is accessible from anywhere outside the class but within a program. 

private It cannot be accessed or viewed from outside the class. 

protected It is similar to a private member but it can be accessed in child classes 

which are called derived classes. 



class PublicAccess 

{ 

    // public access modifier 

    public:    

    int x;            // Data Member Declaration  

    void display();   // Member Function decaration 

} 

 

  

Private Access Modifier: 
 

Private keyword, means that no one can access the class members declared private, 

outside that class. If someone tries to access the private members of a class, they will get 

a compile time error. By default class variables and member functions are private. 

 

class PrivateAccess 

{ 

    // private access modifier 

    private:    

    int x;            // Data Member Declaration  

    void display();   // Member Function decaration 

} 

 

 

Protected Access Modifier  
 

Protected, is the last access specifier, and it is similar to private, it makes class 

member inaccessible outside the class. But they can be accessed by any subclass 

of that class in case of inheritance (If class A is inherited by class B, then class B 

is subclass of class A) 

 

class ProtectedAccess 

{ 

    // protected access modifier 

    protected:  

    int x;            // Data Member Declaration  

    void display();   // Member Function decaration 

} 

 

 

 

 Object: 

Class is mere a blueprint or a template. No storage is assigned when we define a class. Objects 

are instances of class, which holds the data variables declared in class and the member functions 

work on these class objects. 

Each object has different data variables. Objects are initialised using special class functions 

called Constructors and whenever the object is out of its scope, another special class member 

function called Destructor is called, to release the memory reserved by the object.  



 

Syntax: 
 

class_name variable_name; 

 

Example 

 

Consider the above Employee class. Object for Employee class can be defined as: 

Employee e; 

Here, object e of Employee class is defined. 

It is exactly the same sort of declaration that we do for the variables of different data 

types. 

 

 

 

 

Example : Following example demonstrates the working of Objects  

  and Class in C++ 
 

#include <iostream.h> 

class Employee 

{ 

     private: 

          int empid; 

          float salary; 

     public: 

          int emp_details() 

          { 

               empid=100; 

               salary=10000.0; 

          } 

          int show() 

          { 

               cout<<"Employee Id : "<<empid<<endl; 

                 

              cout<<"Employee Salary : "<<salary<<endl; 

          } 

}; 

 

int main() 

{ 

    Employee e; 

    e.emp_details(); 

    e.show(); 

    return 0; 

} 

 

Output: 
Employee Id : 100 



Employee Salary : 10000 

 

 

In the above program, there are two data members empid and salary. Two member 

functions emp_details() & show() are defined under Employee class. 

Object e of the Employee class is declared. Function emp_details() for the object e is 

executed using code e.emp_details() which includes details of the employee. Then, 

function show() for the object e is executed which displays details of the employee and 

returns it to the calling function. 

 

Function 

 
Function is a block of code that performs some operation. 

It is a self-contained block of statements that perform a task. 

Function is used to break down the complex program into the smaller chunks. 

It is useful for encapsulating common operations in a single reusable block that clearly describes 

what the function does. 

It defines input parameters that enable callers to pass arguments into the function and returns a 

value as output. 

 

Syntax: 
 

return_type function_name (argument_list) 

{ 

     //Statements; 

} 

 

Following are the parts of a function: 
 

return_type It is a data type that function returns. It is not necessary that function will always 

return a value. 

function_name Function name is the actual name of the function. 

argument_list / 

parameters 

It allows passing arguments to the function from the location where it is called from. 

The argument list is separated by comma. 

Function body It contains a collection of statements that define what the function does. 

 

Example : Program demonstrating the Function 

 
#include <iostream.h> 

int addition(int no1, int no2);                          //Function declaration 

int main() 

{ 

     int num1=10, num2=20, result;                  //Local variable 

     result = addition(num1,num2);        //Calling function. num1 & num2 are Actual Parameters 



     cout<<"Addition is : "<<result<<endl; 

     return 0; 

} 

int addition(int no1, int no2)     //Function definition. no1 & no2 are Formal Parameters 

{ 

     int disp; 

     disp=no1+no2; 

     return disp; 

} 

 

Output: 
Addition is : 30 

 

 

Unit-3 

Friend Function 

Friend functions are special functions of C++ and considered to be a loophole in the Object 

Oriented Programming concepts. 

Friend function is defined by its keyword friend. 

Private and Protected data of class can be accessed using friend function. 

It is defined inside the body of class either in private or public section. 

When we define friend function, the entire class and all of its members are friends. 

Syntax: 

class class_name 

{ 

     friend return_type function_name(arguments); 

} 

 

Example : Demonstrates the working structure of Friend function 

 
#include <iostream.h> 

class Employee 

{ 

     private: 

         int empid; 

     public: 

         Employee(): empid(0){ } 

         friend int display(Employee);  //friend function 

}; 

int display(Employee e)            //function definition 

{ 

      e.empid = 100;             //accessing private data from non-member function 

      return e.empid; 

} 

int main() 

{ 



      Employee e; 

      cout<<"Employee Id: "<<display(e); 

      return 0; 

} 

 

Output: 
Employee Id: 100 

 

In the above program, friend function display() is declared inside Employee class. So, the 

private data can be accessed from this function. 

 

 

 

Friend Class 

 
 It is  possible to make an entire class a friend of another class. When we create a friend class 

then all the member functions of the friend class also become the friend of the other class. This 

requires the condition that the friend becoming class must be first declared or defined.  

The basic Syntax to make class friend is : 

 

       friend class class-name; 

 

In Above syntax, friend and class is the keyword, and class_name could be any class that already 

exists, if the class doesn't exist, then we must use the prototype of that class at the top of Friend 

class. 

 

Example: 

 
#include<iostream.h> 

class A;  //class A prototype: 

class B  //Class B begin: 

{ 

    friend class A; //Friend Class Declaration: 

    private: 

        int Y; //Private member, need to access this member: 

  

    public: 

        B(){ Y=0;} //constructor: 

}; 

  

class A //Class A definition: 

{ 

    private: 

        int X; //Private member: 

  

    public: 

     A(){X=10;}     //constructor: 

  



     void add(B obj) //function with Class B and its Object as an parameter: 

     { 

         obj.Y=25; //Class B private member Access: 

         cout<<obj.Y<< " + "<<X<<" = "<<obj.Y+X<<endl; 

     } 

}; 

  

  

main() 

{ 

    A Obj1; //class A object: 

    B Obj2; //Class B object: 

  

/*now we need to call Function using Class A object: 

  and this function need class B object as an parameter.*/ 

    Obj1.add(Obj2);  

  

    return 0; 

} 

 

 
 

In the Above Example, We started with the prototype of Class B. as we know that it's important 

to declared class prototype because Compiler compiles the code line by line from top to bottom. 

so when compiler will about to compile the code line (friend class A;) , it will generate an 

error (i.e. "A" Was not declared ) , because compiler don't know what is This "A" & where is its 

definition, so when we will declared an Class prototype at the top, then compiler will know about 

class "A". so its important. 

 

 

 

 

Inline Function 
 

A function defined in the body of a class declaration is an inline function. 

Inline function is a combination of macro and function. 

It is a powerful concept in C++ programming language. 

This function increases the execution time of a program. 

Inline is a request to the compiler. It is an optimization technique used by the compiler. 

The keyword inline is used before the function name to make function inline. 
 
 
 

Syntax: 

 
inline function_name() 

{ 

     //Function body 

} 



 

Example : Demonstrating the Inline function execution 

 
#include <iostream.h> 

inline void display() 

{ 

     cout<<"Welcome"; 

} 

int main() 

{ 

     display();  // Call it like a normal function 

} 

 

Output: 

Welcome  

 

 

 

Where does the Inline function not work? 

 
 Inline function does not work if the functions are recursive. 

 Inline function is not used when the function contains static variables. 

 Inline function does not return any value even if the return statement is exists in 

the function. 

 

Advantages of Inline Function 

 
 Inline function does not require calling function overhead. 

 It makes the program faster. 

 Inline function increases locality of reference by utilizing instruction cache. 

 It saves overhead of return call from a function. 

 

Disadvantages of Inline Function 
 

 Inline function increases function size so that it may not fit in the cache and 

causes lots of cache miss. 

 If Inline function is used in the header files, it increases the header file size and 

makes it unreadable. 

 Inline function is not useful for embedded system where large binary size is not 

preferred due to memory size constraints. 

 

 

Function Overloading 

 
C++ provides new feature that is function overloading. It can be considered as an example of 

polymorphism feature in C++. 



If two or more functions have same name but different parameters, it is said to be Function 

Overloading. 
It allows you to use the same function name for different functions in the same scope/class. 

It is used to enhance the readability of the program. 

There are two ways to overload a function: 
 

1. Different number of arguments. 

2. Different datatypes of argument. 

 

1. Different number of arguments 

 
In different number of arguments, two functions have same name but different number of 

parameters/arguments of the same datatype. 

 

Example: Demonstrating function overloading with different number of arguments 

 

#include<iostream.h> 

int add(int a, int b) 

{ 

     cout<<a+b<<endl; 

} 

int add(int a, int b, int c) 

{ 

     cout<<a+b+c<<endl; 

} 

int main() 

{ 

     add(10,20); 

     add(10,20,30); 

} 

 

Output: 
30 

60 

 

In the above example, the add() function is overloaded with two and three arguments. 

 

2. Different datatypes of argument 

In different datatypes of argument, you can define two or more functions with same name 

and same number of parameters but with the different datatype of parameters/arguments. 

Example : Demonstrating Function Overloading with different datatypes of argument 

#include<iostream.h> 

int add(int a, int b) 

{ 



     cout<<a+b<<endl; 

} 

double add(double a, double b) 

{ 

     cout<<a+b<<endl; 

} 

int main() 

{ 

     add(10,20); 

     add(10.5,20.5); 

} 

 

Output: 

30 

31 

 

 

Static Members  in C++ 

Static is a keyword in C++ used to give special characteristics to an element. Static elements are 

allocated storage only once in a program lifetime in static storage area. And they have a scope till 

the program lifetime 

It can be used with data members as well as the member functions.  

Static Keyword can be used with following, 

 Static Variable inside functions: 

Static variables when used inside function are initialized only once, and then they 

hold there value even through function calls. 

These static variables are stored on static storage area , not in stack. 

 

Example: 

#include<iostream.h> 

void counter() 

{ 

    static int count=0; 

    cout << count++; 

} 

 

void main() 

{ 

    for(int i=0;i<5;i++) 

    { 

        counter(); 

    } 



} 

 

Output: 

0 1 2 3 4 

 

Let's see the same program's output without using static variable. 

Example: 

#include<iostream.h> 

void counter() 

{ 

    int count=0; 

    cout << count++; 

} 

 

void  main() 

{ 

    for(int i=0;i<5;i++) 

    { 

        counter(); 

    } 

} 

 

Output: 

0 0 0 0 0 

 

If we do not use static keyword, the variable count, is reinitialized everytime 

when counter() function is called, and gets destroyed each time 

when counter() functions ends. 

 But, if we make it static, once initialized count will have a scope till the end 

of main() function and it will carry its value through function calls too. 

If you don't initialize a static variable, they are by default initialized to zero. 

 

 Static Data Member in class 

Static data members of class are those members which are shared by all the 

objects. Static data member has a single piece of storage, and is not available as 

separate copy with each object, like other non-static data members. 

Static member variables (data members) are not initialied using constructor, 

because these are not dependent on object initialization. 

Also, it must be initialized explicitly, always outside the class. If not initialized, 

Linker will give error. 

 

Example: 

#include<iostream.h> 

class X 



{ 

    public: 

    static int i; 

    X() 

    { 

        // construtor 

    }; 

}; 

int X::i=1; 

void main() 

{ 

    X obj; 

    cout << obj.i;   // prints value of i 

} 

Output: 

1 

Once the definition for static data member is made, user cannot redefine it. 

Though, arithmetic operations can be performed on it.

 

 Static Member Functions in class 

A function is made static by using static keyword with function name. These 

functions work for the class as whole rather than for a particular object of a class. 

It can be called using the object and the direct member access . operator. But, its 

more typical to call a static member function by itself, using class name and scope 

resolution :: operator. 

 

Example: 

#include<iostream.h> 

class X 

{ 

    public: 

    static void f() 

    { 

        // statement 

    } 

}; 

 

void  main() 

{ 

    X::f();   // calling member function directly with class name 

} 

 

These functions cannot access ordinary data members and member functions, but 

only static data members and static member functions. 

 


